Author Topic: Breaking the 'Speed Limit': Simulation Shows Monster Black Holes' Rapid Growth  (Read 437 times)

0 Members and 1 Guest are viewing this topic.

Online Buster's Uncle

  • With community service, I
  • Ascend
  • *
  • Posts: 49690
  • €857
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Breaking the 'Speed Limit': Simulation Shows Monster Black Holes' Rapid Growth
Space.com
By Sarah Lewin, Staff Writer |  March 24, 2017 06:10am ET



A massive, extremely energetic black hole system called a quasar grows as it accretes material in a new simulation.  Credit: Los Alamos National Laboratory



They grow up so fast: A new simulation shows how supermassive black holes could have gotten so large, so quickly in the early universe — by taking a shortcut via a star.

Supermassive black holes form the cores of many galaxies, including the Milky Way, and researchers have found evidence of them dating to very early in the universe's history. In fact, seemingly too early — supermassive black holes take a long time to form, and researchers have been searching for explanations of how they were able to grow so massive (several billion times the sun's mass) within the first billion years after the Big Bang, surpassing their apparent "speed limit" on growth.

According to a new simulation, black holes can only grow so fast, but stars can expand to incredible size even faster in certain conditions before collapsing down into a black hole. That way, the energetic galactic centers can form earlier than expected. The researchers also explained their simulation in a new video.

"It turns out that while supermassive black holes have a growth speed limit, certain types of massive stars do not," Joseph Smidt, a researcher at the theoretical design division of Los Alamos National Laboratory and the first author on the new work, said in a statement. "We asked, what if we could find a place where stars could grow much faster, perhaps to the size of many thousand suns; could they form supermassive black holes in less time?"

The researchers compared their models to the most distant known energetic galactic center, called a quasar, and one of the most massive of those objects, which is also ancient, to see whether that method could have quickly grown them to full size. If ultralarge stars are born in the right environment — one with the ideal combination of rapidly incoming material and local conditions — they could indeed collapse and form quasars of that mass and age, the researchers found.

The simulation also ended up accurately modeling star formation and other phenomena that happen around black holes, the distribution of galaxy densities, gas temperature changes and ionization, the researchers said in the statement.



A new simulation from Los Alamos National Laboratory suggests how supermassive black holes might have formed extra quickly in the early universe.  Credit: Los Alamos National Laboratory


"This was largely unexpected," Smidt said. "I thought this idea of growing a massive star in a special configuration and forming a black hole with the right kind of masses was something we could approximate, but to see the black hole inducing star formation and driving the dynamics in ways that we've observed in nature was really the icing on the cake."

The new work has been submitted to The Astrophysical Journal, and it is currently available online at arXiv.org.


http://www.space.com/36191-supermassive-black-hole-formation-shortcut.html

 

* User

Welcome, Guest. Please login or register.

Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
104 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
6 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 315
AC2 Wiki Logo
-click pic for wik-

* Random quote

Until quite recently, spider silk had the highest tensile strength of any substance known to man, and the name silksteel pays homage to the arachnid for good reason.
~Commissioner Pravin Lal 'U.N. Scientific Survey'

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 35.

[Show Queries]